Как Nvidia собирается двигать технологический прогресс?
Как Nvidia собирается двигать технологический прогресс?
Дженсен Хуанг выступил на CES 2025 в 1.5 часовой презентации. Анализ выступления важен не только в контексте «самой дорогой и успешной компании планеты», но и в контексте технологического прогресса, т.к. именно Nvidia выступает основный драйвером внедрения ИИ.
Очевидно, что значительная часть пресс-конференции носила «рекламно-агитационный характер». Хуанг продает технологии, которые рынком оценены почти в 4 трлн долларов. Также очевидно, что фактор ИИ будет подсвечен максимально ярко, т.к. ИИ и только ИИ создал Nvidia той компанией, которая есть (самая дорогая и успешная за всю историю по скорости набора капитализации и генерации денежного потока).
Я опущу первую треть презентации (анонс игровых видеокарт RTX пятой серии и Blackwell для дата центров). По игровым видеокартам необходимо ждать реальных тестов, а серверный сегмент Blackwell был представлен и подробно изучен почти год назад.
В презентации очень много технической информации, поэтому я буду разбавлять своими комментариями и дополнениями.
Агентские ИИ представляет собой подвид ГИИ для узкоспециализированных задач, как в виртуальной/цифровой среде, так и в реальном физическом мире. Это концепция, сочетающая в себе когнитивные способности ИИ и механизмы активного взаимодействия с физическим или виртуальным миром.
Агентский ИИ способен взаимодействовать с окружающим миром, предсказывать действия и действовать автономно.
Как работают агентские ИИ для физического мира?
• Агент получает данные из окружающей среды через сенсоры, камеры, микрофоны или API.
• Полученные данные анализируются с использованием алгоритмов машинного обучения, нейронных сетей или других методов на основе ранее обученных моделей.
• На основе обработанных данных агент выбирает действия, которые приведут к выполнению его цели, разбивая задачу на подзадачи.
• Агент выполняет выбранное действие, используя физические устройства (роботы, манипуляторы) или программные средства (управление процессами, генерация контента).
• Сбор телеметрических данных о ходе выполнения для коррекции ошибок.
Зачем нужны агентские ИИ?
• Агентские ИИ позволяют автоматизировать сложные и монотонные задачи, снижая затраты на ручной труд. Это касается, как работы в цифровом пространстве, так и в реальном мире.
• За счет быстрого анализа больших объемов данных агентский ИИ может находить оптимальные решения в реальном времени, минимизируя ошибки и повышая производительность.
• Программные агенты могут анализировать пользовательские предпочтения и адаптировать свою работу под выбранные паттерны взаимодействия и поведения.
Что еще пытается внедрить Nvidia? Превращение ПК в универсальную платформу для разработки ИИ, представляя набор инструментов для разработчиков, протоколов и библиотек (с акцентом на модель Llama от Meta), которые позволят ускорить внедрении ИИ в реальные задачи, как локально, так и в облачной среде.
Nvidia представила концепцию генеративных API, которые позволяют ИИ создавать данные, генерировать изображения, звуки и даже видео на основе пользовательских запросов.
Значительную часть презентации Хуанг пытался продвинуть тезис о повсеместном внедрении ИИ. Не только на уровне облака и мега дата центров / ЦОД уровня Google или Microsoft, а в том числе на уровне локальных серверов в компаниях и даже в пользовательских ПК.
Интеграция Windows с WSL2 (Windows Subsystem for Linux), которая поддерживает CUDA и позволяет разрабатывать и запускать ИИ-приложения с высокой производительностью.
Nvidia прогнозирует, что обновленные ПК смогут обрабатывать сложные задачи ИИ на уровне высокопроизводительных серверов, как за счет внедрения новых API и протоколов (программная среда), так и из-за роста вычислительных мощностей.
Хуанг анонсировал Project DIGITS — компактный AI-суперкомпьютер на базе Grace Blackwell, предназначенный для разработчиков и исследователей (релиз в мае 2025).
Продолжение следует. Впереди самое интересное.